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Overview

I Classic optimal experiment design methods consider

- linear systems and thus cannot account for a computation
iImaging system’s non-linearities.

+ We propose a new method, Physics-based Learned

Design [1], that incorporates system model non-linearities
and prior information in the design process.

Introduction

Conventional microscopes image only a sample’s absorption.
However, when staining is not possible, phase can provide a
mechanism for contrast and quantitative information.
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The LED array microscope [2] is a computational imaging
system that marries hardware and software design to enable
quantitative phase, super-resolution, and volumetric imaging.
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I All modalities require several to hundreds of

» Mmeasurements and thus are limited in temporal resolution.

Physics-based Network

Conventional Image Reconstruction:
Data Consistency Term Prior Term
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Usually solved with proximal gradient descent (PGD) [3].
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PGD is unrolled to form a neural network that incorporates
known quantities such as the system model and the prior.
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Learned Design

We use supervised learning to design the LED brightnesses for
each measurement to maximize the overall performance of the

system. Physics-based Network

Design matrix (i.e. LED brightnesses) \ Ground Truth
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Practical Constraints: Positivity, Scaling, Structural

Experimental Results
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Remarks

We propose a new method that learns the experiment design
for a computational imaging system:

== Physics-based Network: Incorporates known quantities such
as the system model and prior information.

+ Efficiency: Network is completely parameterized by
only a few design variables and thus we do not require a large
number of training examples.

== Generality: We are able to learn context-specific designs
using simulated data that test well in experiment.
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