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Memory-efficient Learning

Conventional Image Reconstruction:

The system’s image prior and experimental design can be 
learned to improve overall performance. Unroll the iterations of 
the reconstruction’s optimizer to form the layers of a network [1]. 
Optimizers often alternate between applying data and prior 
updates to form the network:
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Read more here!

Overview

We propose a method that enables learning for large-scale 
computational imaging systems using constant memory.+

! Learning for large-scale computational imaging systems 
with standard backpropagation is limited due to the 
memory capacity of modern graphical processing units. 
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Rather than storing the whole graph for auto-differentiation,
smaller graphs can be formed for each layer one at a time in
reverse order by recalculating intermediate variables using each
layer’s inverse.

Gradients are computed for the network using automatic
differentiation [2]. For large-scale computational imaging
systems, this will exceed the GPU’s memory capacity.
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Results: Super Resolution Microscopy

Results: Multi-channel MRI

Learning image priors for 3D multi-channel MRI [3] is 
restricted by memory available on GPU.

+Multi-channel MRI reduces scan time by undersampling 
and relying on image priors for reconstruction. 
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Learn the illumination design to compress the information
into fewer measurements [4].+

System’s
bandwidth

Fourier Ptychography performs super resolution on an 
LED array microscope, however, has poor time resolution.!
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Low resolution Ground Truth Memory-efficient Learning

Our method enables learning at practical scales for this
system, ordinarily requiring 500GB using only 3GB. +
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Recalculate input to 
layer using layer’s inverse
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solved using fixed point method closed form solution
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Our method enables learning at practical scales for this
system, ordinarily requiring >40GB using only 10GB. +

MR image reconstruction [3]:
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